Integration: Mastodon Fetcher
A custom component to fetch a mastodon usernames latest posts
The MastodonFetcher
is a simple custom component that fetches the last_k_posts
of a given Mastodon username.
You can see a demo of this custom component in the
🦄 Should I Follow? space on Hugging Face 🤗.
The latest versions of mastodon-fetcher-haystack
are compatible only with Haystack 2.x. You need to specify the version explicitly to import the MastodonFetcher
component suitable with Haystack 1.x.
Table of Contents
Haystack 2.0
This component expects username
to be a complete Mastodon username. For example “
tuana@sigmoid.social”. If the provided username is correct and public, MastodonFetcher
will return a list of Document
objects where the contents are the users latest posts.
Installation (2.0)
pip install mastodon-fetcher-haystack
Usage (2.0)
You can use this component on its own, or in a pipeline.
On its own:
from mastodon_fetcher_haystack.mastodon_fetcher import MastodonFetcher
mastodon_fetcher = MastodonFetcher()
mastodon_fetcher.run(username="tuana@sigmoid.social")
In a pipeline
from haystack import Pipeline
from mastodon_fetcher_haystack.mastodon_fetcher import MastodonFetcher
from haystack.components.generators import OpenAIGenerator
from haystack.components.builders import PromptBuilder
prompt_builder = PromptBuilder(template='YOUR_PROMPT_TEMPLATE')
llm = OpenAIGenerator(api_key'YOUR_OPENAI_API_KEY')
pipe = Pipeline()
pipe.add_component("fetcher", mastodon_fetcher)
pipe.add_component("prompt_builder", prompt_builder)
pipe.add_component("llm", llm)
pipe.connect("fetcher.documents", "prompt_builder.documents")
pipe.connect("prompt_builder.prompt", "llm.prompt")
pipe.run(data={"fetcher": {"username": "tuana@sigmoid.social"}})
Haystack 1.x
This component expects query
to be a complete Mastodon username. For example “
tuana@sigmoid.social”. If the provided username is correct and public, MastodonFetcher
will return a list of Document
objects where the contents are the users latest posts.
Installation (1.x)
pip install mastodon-fetcher-haystack==0.0.1
Usage (1.x)
Because the component returns a list of Documents, it can be used at the same step that a Retriever would normally be used. For example, use it in a Retrieval Augmented Generative (RAG) pipeline as follows:
from haystack import Pipeline
from haystack.nodes import PromptNode, PromptTemplate, AnswerParser
from haystack.utils import print_answers
from mastodon_fetcher_haystack.mastodon_fetcher import MastodonFetcher
mastodon_fetcher = MastodonFetcher()
prompt_template = PromptTemplate(prompt="Given the follwing Mastodon posts stream, create a short summary of the topics the account posts about. Mastodon posts stream: {join(documents)};\n Answer:",
output_parser=AnswerParser())
prompt_node = PromptNode(default_prompt_template=prompt_template, model_name_or_path="gpt-3.5-turbo-instruct", api_key=YOUR_OPENAI_API_KEY)
pipe = Pipeline()
pipe.add_node(component=mastodon_fetcher, name="MastodonFetcher", inputs=["Query"])
pipe.add_node(component=prompt_node, name="PromptNode", inputs=["MastodonFetcher"])
result = pipe.run(query="tuana@sigmoid.social", params={"MastodonFetcher": {"last_k_posts": 3}})
Limitations
- The way this component is set up is very particular with how it expects usernames. Make sure you provide the full username, e.g.:
username@instance
- By default, the Mastodon API allows requesting up to 40 posts.