Integration: fastRAG
fastRAG is a research framework for efficient and optimized retrieval augmented generative pipelines
fastRAG is a research framework, that extends Haystack, with abilities to build efficient and optimized retrieval augmented generative pipelines (with emphasis on Intel hardware), incorporating state-of-the-art LLMs and Information Retrieval modules.
Key Features
- Optimized RAG: Build RAG pipelines with SOTA efficient components for greater compute efficiency.
- Optimized for Intel Hardware: Leverage Intel extensions for PyTorch (IPEX), 🤗 Optimum Intel and 🤗 Optimum-Habana for running as optimal as possible on Intel® Xeon® Processors and Intel® Gaudi® AI accelerators.
- Customizable: fastRAG is built using Haystack and HuggingFace. All of fastRAG’s components are 100% Haystack compatible.
:rocket: Components
For a brief overview of the various unique components in fastRAG refer to the Components Overview page.
LLM Backends | |
Intel Gaudi Accelerators | Running LLMs on Gaudi 2 |
ONNX Runtime | Running LLMs with optimized ONNX-runtime |
Llama-CPP | Running RAG Pipelines with LLMs on a Llama CPP backend |
Optimized Components | |
Embedders | Optimized int8 bi-encoders |
Rankers | Optimized/sparse cross-encoders |
RAG-efficient Components | |
ColBERT | Token-based late interaction |
Fusion-in-Decoder (FiD) | Generative multi-document encoder-decoder |
REPLUG | Improved multi-document decoder |
PLAID | Incredibly efficient indexing engine |
:round_pushpin: Installation
Preliminary requirements:
- Python 3.8 or higher.
- PyTorch 2.0 or higher.
To set up the software, clone the project and run the following, preferably in a newly created virtual environment:
git clone https://github.com/IntelLabs/fastRAG.git
cd fastrag
pip install .
There are several dependencies to consider, depending on your specific usage:
# Additional engines/components
pip install .[intel] # Intel optimized backend [Optimum-intel, IPEX]
pip install .[elastic] # Support for ElasticSearch store
pip install .[qdrant] # Support for Qdrant store
pip install libs/colbert # Indexing engine for ColBERT/PLAID
pip install .[faiss-cpu] # CPU-based Faiss library
pip install .[faiss-gpu] # GPU-based Faiss library
pip install .[knowledge_graph] # Libraries for working with spacy and KG
# User interface (for demos)
pip install .[ui]
# Benchmarking
pip install .[benchmark]
# Development tools
pip install .[dev]